Multi-label classification aims to classify instances with discrete non-exclusive labels. Most approaches on multi-label classification focus on effective adaptation or transformation of existing binary and multi-class learning approaches but fail in modelling the joint probability of labels or do not preserve generalization abilities for unseen label combinations. To address these issues we propose a new multi-label classification scheme, LNEMLC - Label Network Embedding for Multi-Label Classification, that embeds the label network and uses it to extend input space in learning and inference of any base multi-label classifier. The approach allows capturing of labels' joint probability at low computational complexity providing results comparable to the best methods reported in the literature. We demonstrate how the method reveals statistically significant improvements over the simple kNN baseline classifier. We also provide hints for selecting the robust configuration that works satisfactorily across data domains.

3
下载
关闭预览

相关内容

网络嵌入旨在学习网络中节点的低维度潜在表示,所学习到的特征表示可以用作基于图的各种任务的特征,例如分类,聚类,链路预测和可视化。
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
26+阅读 · 2020年4月15日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
98+阅读 · 2019年11月25日
机器学习入门的经验与建议
专知会员服务
57+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
56+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
68+阅读 · 2019年10月9日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
10+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
8+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
22+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
33+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
小贴士
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
14+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
10+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
8+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
22+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
33+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员