Multi-label classification aims to classify instances with discrete non-exclusive labels. Most approaches on multi-label classification focus on effective adaptation or transformation of existing binary and multi-class learning approaches but fail in modelling the joint probability of labels or do not preserve generalization abilities for unseen label combinations. To address these issues we propose a new multi-label classification scheme, LNEMLC - Label Network Embedding for Multi-Label Classification, that embeds the label network and uses it to extend input space in learning and inference of any base multi-label classifier. The approach allows capturing of labels' joint probability at low computational complexity providing results comparable to the best methods reported in the literature. We demonstrate how the method reveals statistically significant improvements over the simple kNN baseline classifier. We also provide hints for selecting the robust configuration that works satisfactorily across data domains.
翻译:多标签分类的目的是用离散的非排他性标签对实例进行分类。多标签分类方法大多侧重于现有二进制和多级学习方法的有效调整或转换,但未能模拟标签的共同概率,或无法保存隐性标签组合的通用能力。为了解决这些问题,我们提出了一个新的多标签分类计划,即LNEMLC-标签网络嵌入多标签分类,将标签网络嵌入并用来扩大任何基础多标签分类器的学习和推断输入空间。该方法允许以低计算复杂性捕获标签的共同概率,提供与文献中报告的最佳方法相类似的结果。我们展示了该方法如何在统计上显著改进了简单的 kNN 基线分类器。我们还提供了提示,用于选择在数据领域运作令人满意的稳健配置。