In Multi-Label Text Classification (MLTC), one sample can belong to more than one class. It is observed that most MLTC tasks, there are dependencies or correlations among labels. Existing methods tend to ignore the relationship among labels. In this paper, a graph attention network-based model is proposed to capture the attentive dependency structure among the labels. The graph attention network uses a feature matrix and a correlation matrix to capture and explore the crucial dependencies between the labels and generate classifiers for the task. The generated classifiers are applied to sentence feature vectors obtained from the text feature extraction network (BiLSTM) to enable end-to-end training. Attention allows the system to assign different weights to neighbor nodes per label, thus allowing it to learn the dependencies among labels implicitly. The results of the proposed model are validated on five real-world MLTC datasets. The proposed model achieves similar or better performance compared to the previous state-of-the-art models.
翻译:在多标签文本分类( MLTC) 中,一个样本可以属于一个以上类别。 观察到大多数 MLTC 任务, 标签之间有依赖性或关联性。 现有方法往往忽略标签之间的关系 。 在本文中, 提议了一个基于图形的注意网络模型, 以捕捉标签间的注意依赖性结构 。 图形注意网络使用一个特征矩阵和关联矩阵来捕捉和探索标签之间的关键依赖性, 并生成任务分类符。 生成的分类器被用于从文本特征提取网络( BILSTM) 获取的句状特性矢量, 以便进行端到端培训 。 注意允许系统给每个标签的相邻节点分配不同重量, 从而使其能够默认地了解标签之间的依赖性 。 提议的模型的结果在五个真实世界 MLTC 数据集上得到验证 。 与之前的状态模型相比, 拟议的模型取得相似或更好的性能 。