In this paper, we propose a novel deep learning architecture for multi-label zero-shot learning (ML-ZSL), which is able to predict multiple unseen class labels for each input instance. Inspired by the way humans utilize semantic knowledge between objects of interests, we propose a framework that incorporates knowledge graphs for describing the relationships between multiple labels. Our model learns an information propagation mechanism from the semantic label space, which can be applied to model the interdependencies between seen and unseen class labels. With such investigation of structured knowledge graphs for visual reasoning, we show that our model can be applied for solving multi-label classification and ML-ZSL tasks. Compared to state-of-the-art approaches, comparable or improved performances can be achieved by our method.
翻译:在本文中,我们提出了一个新的关于多标签零光学习(ML-ZSL)的深层次学习架构(ML-ZSL),它能够预测每个输入实例的多个不可见类标签。受人类在利益对象之间利用语义学知识的方式的启发,我们提出了一个框架,将知识图解用于描述多个标签之间的关系。我们的模型从语义标签空间学习信息传播机制,可用于模拟可见和看不见类标签之间的相互依存关系。通过对结构化知识图解进行这样的调查,以进行视觉推理,我们展示了我们的模型可以用于解决多标签分类和ML-ZSL任务。与最先进的方法相比,我们的方法可以实现可比或改进的绩效。