Camouflaged object detection is a challenging task that aims to identify objects having similar texture to the surroundings. This paper presents to amplify the subtle texture difference between camouflaged objects and the background for camouflaged object detection by formulating multiple texture-aware refinement modules to learn the texture-aware features in a deep convolutional neural network. The texture-aware refinement module computes the covariance matrices of feature responses to extract the texture information, designs an affinity loss to learn a set of parameter maps that help to separate the texture between camouflaged objects and the background, and adopts a boundary-consistency loss to explore the object detail structures.We evaluate our network on the benchmark dataset for camouflaged object detection both qualitatively and quantitatively. Experimental results show that our approach outperforms various state-of-the-art methods by a large margin.
翻译:悬浮物体探测是一项具有挑战性的任务,目的是查明与周围环境具有类似质地的物体。本文件通过开发多个质地-有意识的精细改进模块,学习深共振神经网络中的质地-有意识特征,从而扩大伪装物体与伪装物体探测背景之间的微妙质地差异。质地-有意识的精细改进模块计算出提取质地信息时的特征反应的共变矩阵,设计一种亲和性损失,以学习一套参数图,帮助分离伪装物体与背景之间的质地和背景,并采用边界一致性损失来探索物体的详细结构。我们评估了我们关于质和量两方面的伪装物体探测基准数据集的网络。实验结果表明,我们的方法在很大的边距上都超越了各种状态的艺术方法。