This paper pushes the envelope on camouflaged regions to decompose them into meaningful components, namely, camouflaged instances. To promote the new task of camouflaged instance segmentation, we introduce a new large-scale dataset, namely CAMO++, by extending our preliminary CAMO dataset (camouflaged object segmentation) in terms of quantity and diversity. The new dataset substantially increases the number of images with hierarchical pixel-wise ground-truths. We also provide a benchmark suite for the task of camouflaged instance segmentation. In particular, we conduct extensive evaluation of state-of-the-art instance segmentation detectors on our newly constructed CAMO++ dataset in various scenarios. The dataset, evaluation suite, and benchmark will be publicly available at our project page.
翻译:本文将隐蔽区域封套推向隐蔽区域,使其分解成有意义的组成部分,即伪装实例。为了推动伪装实例分解的新任务,我们引入了一个新的大型数据集,即CAMO+++,在数量和多样性方面扩展了我们的初步CAMO数据集(隐形天体分解)。新的数据集大大增加了具有像素等级的像素智慧地面真相图像的数量。我们还为隐蔽实例分解任务提供了一个基准套件。特别是,我们在不同情况下对新建CAMO+++数据集上的最新实例分解探测器进行了广泛的评估。将在我们的项目页面上公开提供数据集、评价套件和基准。