地平线黄李超开讲:深度学习和物体检测!
对话CVPR2016:目标检测新进展:
基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN:
基于深度学习的目标检测研究进展
讲堂干货No.1|山世光-基于深度学习的目标检测技术进展与展望
基于特征共享的高效物体检测 Faster R-CNN和ResNet的作者任少卿 博士毕业论文 中文
R-CNN:论文笔记
Fast-RCNN:
Faster-RCNN:
FPN:
R-FCN:
SSD:
YOLO:
DenseBox:余凯特邀报告:基于密集预测图的物体检测技术造就全球领先的ADAS系统
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection - [http://www.cnblogs.com/xueyuxiaolang/p/5959442.html]
深度学习论文笔记:DSSD - [https://jacobkong.github.io/blog/2938514597/]
DSOD
Focal Loss:
Soft-NMS:
OHEM:
Mask-RCNN 2017:
目标检测之比较
视觉目标检测和识别之过去,现在及可能
CVPR2019目标检测方法进展综述
基于深度学习的「目标检测」算法综述
目标检测综述
深度学习目标检测网络汇总对比
从锚点到关键点,最新的目标检测方法发展到哪了
从RCNN到SSD,这应该是最全的一份目标检测算法盘点
目标检测中的不平衡问题:综述
深度学习中用于对象检测的最新进展
基于深度学习的对象检测概述
目标检测20年:综述
Deep Neural Networks for Object Detection (基于DNN的对象检测)NIPS2013:
R-CNN Rich feature hierarchies for accurate object detection and semantic segmentation:
Fast R-CNN :
Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:
Mask R-CNN
Light-Head R-CNN
Cascade R-CNN
Scalable Object Detection using Deep Neural Networks
Scalable, High-Quality Object Detection
SPP-Net Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
DeepID-Net DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
Object Detectors Emerge in Deep Scene CNNs
segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
Object Detection Networks on Convolutional Feature Maps
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
DeepBox: Learning Objectness with Convolutional Networks
Object detection via a multi-region & semantic segmentation-aware CNN model
You Only Look Once: Unified, Real-Time Object Detection
YOLOv2 YOLO9000: Better, Faster, Stronger
YOLOv3
YOLT
AttentionNet: Aggregating Weak Directions for Accurate Object Detection
DenseBox: Unifying Landmark Localization with End to End Object Detection
SSD: Single Shot MultiBox Detector
DSSD : Deconvolutional Single Shot Detector
FSSD
ESSD
MDSSD
Pelee
Fire SSD
G-CNN: an Iterative Grid Based Object Detector
HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
A MultiPath Network for Object Detection
R-FCN: Object Detection via Region-based Fully Convolutional Networks
A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
Feature Pyramid Networks for Object Detection
Learning Chained Deep Features and Classifiers for Cascade in Object Detection
DSOD: Learning Deeply Supervised Object Detectors from Scratch
Focal Loss for Dense Object Detection ICCV 2017 Best student paper award. Facebook AI Research
MegDet
Mask-RCNN 2017 ICCV 2017 Best paper award. Facebook AI Research
RefineNet
DetNet
SSOD
CornerNet
M2Det
3D Object Detection
ZSD(Zero-Shot Object Detection)
OSD(One-Shot object Detection)
Weakly Supervised Object Detection
Softer-NMS
NAS-FPN,可实现比Mask-RCNN、FPN、SSD更快更好的目标检测
多方向目标检测:水平边界框上的滑动顶点
SM-NAS:结构到模块的神经体系结构搜索以进行目标检测
基于PSNet和边框回归的弱监督目标检测(WSOD)
带有可见IoU和Box Sign预测器的遮挡性行人检测
CSPNet:可以增强CNN学习能力的新型Backbone
ReBiF:残差双融合特征金字塔网络,用于较精确的Single-shot目标检测
目标检测的性能上界讨论
DIoU Loss:更快更好地学习边界框回归
CoAE:用于One-Shot目标检测的共同注意和共同激励
SAPD:Soft Anchor-Point目标检测
MMOD:基于混合模型的目标检测边界框密度估计
IENet:方向性航空目标检测的One Stage Anchor Free检测器
MnasFPN:用于移动设备上目标检测的延迟感知的金字塔体系结构
IPG-Net:用于目标检测的图像金字塔引导网络
MAL:用于目标检测的多Anchor学习
ATSS:缩小Anchor-free和Anchor-based的性能差距:通过自适应训练样本选择
Strong-Weak Distribution Alignment for Adaptive Object Detection
PartNet: A Recursive Part Decomposition Network for Fine-grained and Hierarchical Shape Segmentation
Deep HoughVoting for 3D Object Detection in Point Clouds
Simultaneous multi-view instance detection with learned geometric soft-constraints
Cap2Det: Learning to Amplify Weak Caption Supervision for Object Detection
Towards Adversarially Robust Object Detection
Multi-adversarial Faster-RCNN for Unrestricted Object Detection
Selectivity or Invariance: Boundary-aware Salient Object Detection
Joint Monocular 3D Detection and Tracking
GA-DAN: Geometry-Aware Domain Adaptation Network for Scene Text Detection and Recognition
ThunderNet: Towards Real-time Generic Object Detection
MemorizingNormality to Detect Anomaly: Memory-augmented Deep Autoencoder (MemAE) forUnsupervised Anomaly Detection
R-CNN
Fast R-CNN:
Faster R-CNN
SPP-Net
YOLO
YOLOv2
YOLOv3
SSD
Recurrent Scale Approximation for Object Detection in CNN
Mask-RCNN 2017
Light-Head R-CNN
Cascade R-CNN
YOLT
DSSD
Pelee
R-FCN
FPN
DSOD
RetinaNet
MegDet
RefineNet
DetNet
CornerNet
M2Det
3D Object Detection
Softer-NMS
初步版本,水平有限,有错误或者不完善的地方,欢迎大家提建议和补充,会一直保持更新,本文为专知内容组原创内容,未经允许不得转载,如需转载请发送邮件至fangquanyi@gmail.com 或 联系微信专知小助手(Rancho_Fang)
敬请关注http://www.zhuanzhi.ai 和关注专知公众号,获取第一手AI相关知识
最近更新:2019-12-10