In this paper, we propose a novel object detection framework named "Deep Regionlets" by establishing a bridge between deep neural networks and conventional detection schema for accurate generic object detection. Motivated by the advantages of regionlets on modeling object deformation and multiple aspect ratios, we incorporate regionlet into an end-to-end trainable deep learning framework. The deep regionlets framework consists of a region selection network and a deep regionlet learning module. Specifically, given a detection bounding box proposal, the region selection network serves as a guidance on where to select regions to learn the features from. The regionlet learning module focuses on local feature selection and transformation to alleviate local variations. To this end, we first realize non-rectangular region selection within the detection framework to accommodate variations in object appearance. Moreover, we further design a "gating network" within the regionlet leaning module to enable soft regionlet selection and pooling. The Deep Regionlets framework is trained end-to-end without additional efforts. We perform ablation studies on its behavior and conduct extensive experiments on the PASCAL VOC and Microsoft COCO dataset. The proposed framework outperforms state-of-the-art algorithms, such as RetinaNet and Mask R-CNN, even without additional segmentation labels.
翻译:在本文中,我们提出一个名为“深区域”的新物体探测框架,办法是在深神经网络和常规探测模型之间建立桥梁,以便精确地探测通用物体。我们受关于物体变形模型和多方面比率的区域选择的优势的驱动,将区域纳入一个端对端可训练深深学习框架。深区域框架包括一个区域选择网络和一个深区域学习模块。具体地说,鉴于一个探测捆绑箱提案,区域选择网络是指导选择区域从何处学习特征的指南。区域学习模块侧重于本地特征选择和转换,以缓解本地差异。为此,我们首先在探测框架内实现非矩形区域选择,以适应物体外观的变化。此外,我们进一步设计了区域“定位网络”模块,以促成软区域选择和集合。深海区域选择框架经过培训端对端,而没有做出更多努力。我们对其行为进行了反动研究,并广泛试验了PASCAL VOC 和 Microsoft COCOCO 数据设置。为此,我们首先在探测框架内实现了非矩区域选择,甚至超越了Restal-restrat-stalations-regalations, as-laformas-s-s-slation-regislations-regislations-regalationslationslation-slationslationslationslationslgaldaldaldaldaldaldaldaldaldals, et-regaldaldaldaldaldaldaldaldalgaldaldaldaldaldalds,甚至, 。