目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

Estimating the mask-wearing ratio in public places is important as it enables health authorities to promptly analyze and implement policies. Methods for estimating the mask-wearing ratio on the basis of image analysis have been reported. However, there is still a lack of comprehensive research on both methodologies and datasets. Most recent reports straightforwardly propose estimating the ratio by applying conventional object detection and classification methods. It is feasible to use regression-based approaches to estimate the number of people wearing masks, especially for congested scenes with tiny and occluded faces, but this has not been well studied. A large-scale and well-annotated dataset is still in demand. In this paper, we present two methods for ratio estimation that leverage either a detection-based or regression-based approach. For the detection-based approach, we improved the state-of-the-art face detector, RetinaFace, used to estimate the ratio. For the regression-based approach, we fine-tuned the baseline network, CSRNet, used to estimate the density maps for masked and unmasked faces. We also present the first large-scale dataset, the ``NFM dataset,'' which contains 581,108 face annotations extracted from 18,088 video frames in 17 street-view videos. Experiments demonstrated that the RetinaFace-based method has higher accuracy under various situations and that the CSRNet-based method has a shorter operation time thanks to its compactness.

0
0
下载
预览

Few-shot object detection has rapidly progressed owing to the success of meta-learning strategies. However, the requirement of a fine-tuning stage in existing methods is timeconsuming and significantly hinders their usage in real-time applications such as autonomous exploration of low-power robots. To solve this problem, we present a brand new architecture, AirDet, which is free of fine-tuning by learning class agnostic relation with support images. Specifically, we propose a support-guided cross-scale (SCS) feature fusion network to generate object proposals, a global-local relation network (GLR) for shots aggregation, and a relation-based prototype embedding network (R-PEN) for precise localization. Exhaustive experiments are conducted on COCO and PASCAL VOC datasets, where surprisingly, AirDet achieves comparable or even better results than the exhaustively finetuned methods, reaching up to 40-60% improvements on the baseline. To our excitement, AirDet obtains favorable performance on multi-scale objects, especially the small ones. Furthermore, we present evaluation results on real-world exploration tests from the DARPA Subterranean Challenge, which strongly validate the feasibility of AirDet in robotics. The source code, pre-trained models, along with the real world data for exploration, will be made public.

0
0
下载
预览

Countless applications depend on accurate predictions with reliable confidence estimates from modern object detectors. It is well known, however, that neural networks including object detectors produce miscalibrated confidence estimates. Recent work even suggests that detectors' confidence predictions are biased with respect to object size and position, but it is still unclear how this bias relates to the performance of the affected object detectors. We formally prove that the conditional confidence bias is harming the expected performance of object detectors and empirically validate these findings. Specifically, we demonstrate how to modify the histogram binning calibration to not only avoid performance impairment but also improve performance through conditional confidence calibration. We further find that the confidence bias is also present in detections generated on the training data of the detector, which we leverage to perform our de-biasing without using additional data. Moreover, Test Time Augmentation magnifies this bias, which results in even larger performance gains from our calibration method. Finally, we validate our findings on a diverse set of object detection architectures and show improvements of up to 0.6 mAP and 0.8 mAP50 without extra data or training.

0
0
下载
预览

Weakly supervised salient object detection (WSOD) targets to train a CNNs-based saliency network using only low-cost annotations. Existing WSOD methods take various techniques to pursue single "high-quality" pseudo label from low-cost annotations and then develop their saliency networks. Though these methods have achieved good performance, the generated single label is inevitably affected by adopted refinement algorithms and shows prejudiced characteristics which further influence the saliency networks. In this work, we introduce a new multiple-pseudo-label framework to integrate more comprehensive and accurate saliency cues from multiple labels, avoiding the aforementioned problem. Specifically, we propose a multi-filter directive network (MFNet) including a saliency network as well as multiple directive filters. The directive filter (DF) is designed to extract and filter more accurate saliency cues from the noisy pseudo labels. The multiple accurate cues from multiple DFs are then simultaneously propagated to the saliency network with a multi-guidance loss. Extensive experiments on five datasets over four metrics demonstrate that our method outperforms all the existing congeneric methods. Moreover, it is also worth noting that our framework is flexible enough to apply to existing methods and improve their performance.

0
0
下载
预览

Monocular 3D object detection is a critical yet challenging task for autonomous driving, due to the lack of accurate depth information captured by LiDAR sensors. In this paper, we propose a stereo-guided monocular 3D object detection network, termed SGM3D, which leverages robust 3D features extracted from stereo images to enhance the features learned from the monocular image. We innovatively investigate a multi-granularity domain adaptation module (MG-DA) to exploit the network's ability so as to generate stereo-mimic features only based on the monocular cues. The coarse BEV feature-level, as well as the fine anchor-level domain adaptation, are leveraged to guide the monocular branch. We present an IoU matching-based alignment module (IoU-MA) for object-level domain adaptation between the stereo and monocular predictions to alleviate the mismatches in previous stages. We conduct extensive experiments on the most challenging KITTI and Lyft datasets and achieve new state-of-the-art performance. Furthermore, our method can be integrated into many other monocular approaches to boost performance without introducing any extra computational cost.

0
0
下载
预览

Existing CNNs-Based RGB-D salient object detection (SOD) networks are all required to be pretrained on the ImageNet to learn the hierarchy features which helps provide a good initialization. However, the collection and annotation of large-scale datasets are time-consuming and expensive. In this paper, we utilize self-supervised representation learning (SSL) to design two pretext tasks: the cross-modal auto-encoder and the depth-contour estimation. Our pretext tasks require only a few and unlabeled RGB-D datasets to perform pretraining, which makes the network capture rich semantic contexts and reduce the gap between two modalities, thereby providing an effective initialization for the downstream task. In addition, for the inherent problem of cross-modal fusion in RGB-D SOD, we propose a consistency-difference aggregation (CDA) module that splits a single feature fusion into multi-path fusion to achieve an adequate perception of consistent and differential information. The CDA module is general and suitable for cross-modal and cross-level feature fusion. Extensive experiments on six benchmark datasets show that our self-supervised pretrained model performs favorably against most state-of-the-art methods pretrained on ImageNet. The source code will be publicly available at \textcolor{red}{\url{https://github.com/Xiaoqi-Zhao-DLUT/SSLSOD}}.

0
0
下载
预览
Top