Semantic segmentation for autonomous driving should be robust against various in-the-wild environments. Nighttime semantic segmentation is especially challenging due to a lack of annotated nighttime images and a large domain gap from daytime images with sufficient annotation. In this paper, we propose a novel GPS-based training framework for nighttime semantic segmentation. Given GPS-aligned pairs of daytime and nighttime images, we perform cross-domain correspondence matching to obtain pixel-level pseudo supervision. Moreover, we conduct flow estimation between daytime video frames and apply GPS-based scaling to acquire another pixel-level pseudo supervision. Using these pseudo supervisions with a confidence map, we train a nighttime semantic segmentation network without any annotation from nighttime images. Experimental results demonstrate the effectiveness of the proposed method on several nighttime semantic segmentation datasets. Our source code is available at https://github.com/jimmy9704/GPS-GLASS.
翻译:用于自主驾驶的语义分解应针对各种周围环境保持稳健。 夜间语义分解尤其具有挑战性, 原因是缺少附加注释的夜间图像, 以及白天图像的广域空白, 并有足够的批注 。 在本文中, 我们提出一个新的基于GPS的夜间语义分解培训框架 。 根据GPS对齐的日间和夜间图像配对, 我们进行跨域通信匹配, 以获得像素级的假监督 。 此外, 我们进行日间视频框架之间的流量估计, 并应用基于GPS的缩放来获取另一个像素级伪监督 。 我们用信任图对夜间语义分解网络进行培训, 无需从夜间图像中作任何批注 。 实验结果显示, 几个夜间语义分解数据集的拟议方法的有效性 。 我们的源代码可在 https://github. com/jimmy9704/GPS- GLASS 上查阅 。