LiDAR sensor is essential to the perception system in autonomous vehicles and intelligent robots. To fulfill the real-time requirements in real-world applications, it is necessary to efficiently segment the LiDAR scans. Most of previous approaches directly project 3D point cloud onto the 2D spherical range image so that they can make use of the efficient 2D convolutional operations for image segmentation. Although having achieved the encouraging results, the neighborhood information is not well-preserved in the spherical projection. Moreover, the temporal information is not taken into consideration in the single scan segmentation task. To tackle these problems, we propose a novel approach to semantic segmentation for LiDAR sequences named Meta-RangeSeg, where a new range residual image representation is introduced to capture the spatial-temporal information. Specifically, Meta-Kernel is employed to extract the meta features, which reduces the inconsistency between the 2D range image coordinates input and 3D Cartesian coordinates output. An efficient U-Net backbone is used to obtain the multi-scale features. Furthermore, Feature Aggregation Module (FAM) strengthens the role of range channel and aggregates features at different levels. We have conducted extensive experiments for performance evaluation on SemanticKITTI and SemanticPOSS. The promising results show that our proposed Meta-RangeSeg method is more efficient and effective than the existing approaches. Our full implementation is publicly available at https://github.com/songw-zju/Meta-RangeSeg .
翻译:LiDAR 传感器对于自主飞行器和智能机器人的感知系统至关重要。 为了满足真实世界应用程序的实时要求, 有必要高效地分割LiDAR扫描。 大部分先前的方法都直接将 3D 点的云直接投射到 2D 球范围图像上, 以便它们能够利用 2D 的 2D 进化操作来进行图像分割。 虽然取得了令人鼓舞的结果, 周边信息在球形投影中没有得到很好的保存。 此外, 单个扫描分块任务没有考虑到时间信息。 为了解决这些问题, 我们建议对LiDAR 序列( 名为 Meta- RangeSeg) 的语义分解采取新颖的方法, 名为 Meta- RangeSeg, 引入新的范围剩余图像代表来捕捉空间- 球范围信息。 具体地说, Meta- Kernal 操作功能, 减少了 2D 范围图像坐标坐标输入和 3D Cartes 坐标输出之间的不一致。 高效的 U- 网络主干网 用于获取多级特征。 此外, 的网格 Agetar Aget Regisml (FAM) 和Se- Se- setic) 加强了我们目前运行的全局测试和全局的系统测试和全局测试方法, 的全局的测试。