We give the first almost optimal polynomial-time proper learning algorithm of Boolean sparse multivariate polynomial under the uniform distribution. For $s$-sparse polynomial over $n$ variables and $\epsilon=1/s^\beta$, $\beta>1$, our algorithm makes $$q_U=\left(\frac{s}{\epsilon}\right)^{\frac{\log \beta}{\beta}+O(\frac{1}{\beta})}+ \tilde O\left(s\right)\left(\log\frac{1}{\epsilon}\right)\log n$$ queries. Notice that our query complexity is sublinear in $1/\epsilon$ and almost linear in $s$. All previous algorithms have query complexity at least quadratic in $s$ and linear in $1/\epsilon$. We then prove the almost tight lower bound $$q_L=\left(\frac{s}{\epsilon}\right)^{\frac{\log \beta}{\beta}+\Omega(\frac{1}{\beta})}+ \Omega\left(s\right)\left(\log\frac{1}{\epsilon}\right)\log n,$$ Applying the reduction in~\cite{Bshouty19b} with the above algorithm, we give the first almost optimal polynomial-time tester for $s$-sparse polynomial. Our tester, for $\beta>3.404$, makes $$\tilde O\left(\frac{s}{\epsilon}\right)$$ queries.


翻译:我们给出了在统一分布下布利安稀疏多变多异性多元性的第一个近乎最佳的多元-时间学习算法。 对于美元变量和美元=1/s ⁇ beta$的粗微多元性多元性, $\beta>$, 我们的算法将美元和美元( 折合) 折合( 折合) {( frac{ 1\\\\\ beta} {\ tilde Oleft( left)\ left( right) (log\\ frafc{ 1\\\ epslon_right)\ log n$美元查询。 注意我们的查询复杂度在1\\\\\ beta>lon$和美元几乎线性。 所有前的算法在美元和1\\\\\\ eclon$( lientral) 和 美元( lientral_q__lon$( lex) lex( lex) lex( lea) lex( lex) lex( lea) lex( lea) lex( leg) leg) $( lex) $( leg) leg) leg) leg) leg) $( leg) $( lex_____________( ral\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
庖丁解牛-图解MySQL 8.0优化器查询转换篇
阿里技术
0+阅读 · 2021年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
庖丁解牛-图解MySQL 8.0优化器查询转换篇
阿里技术
0+阅读 · 2021年9月16日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员