We study the problem of testing whether a function $f: \mathbb{R}^n \to \mathbb{R}$ is a polynomial of degree at most $d$ in the \emph{distribution-free} testing model. Here, the distance between functions is measured with respect to an unknown distribution $\mathcal{D}$ over $\mathbb{R}^n$ from which we can draw samples. In contrast to previous work, we do not assume that $\mathcal{D}$ has finite support. We design a tester that given query access to $f$, and sample access to $\mathcal{D}$, makes $(d/\varepsilon)^{O(1)}$ many queries to $f$, accepts with probability $1$ if $f$ is a polynomial of degree $d$, and rejects with probability at least $2/3$ if every degree-$d$ polynomial $P$ disagrees with $f$ on a set of mass at least $\varepsilon$ with respect to $\mathcal{D}$. Our result also holds under mild assumptions when we receive only a polynomial number of bits of precision for each query to $f$, or when $f$ can only be queried on rational points representable using a logarithmic number of bits. Along the way, we prove a new stability theorem for multivariate polynomials that may be of independent interest.
翻译:我们研究一个函数 $f 是否 :\ mathbb{R} {R} \ 到 mathbb{R} 的测试问题。 这里, 函数之间的距离是用一个未知的分布 $\ mathb{D} $ 大于$\ mathbb{R} 美元来测量的。 与以前的工作相比, 我们不认为$\ mathcal{D} 具有有限的支持。 我们设计了一个测试器, 给查询访问以$f$, 样本使用 $\ mathbal{D} $, 使 $(d/\ varepsilon) /%O(1)} 许多查询以美元表示 $, 如果美元是一美元多数值, 接受的概率至少是2/3美元, 如果每度一美元, 多元美元 美元与美元之间有一定的支持。 我们只能以美元为最低数值的质数 。 当我们只能使用 美元 的精确度的计算结果时, 。