项目名称: 复杂数据模型中的分布逼近方法
项目编号: No.11471302
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 吴耀华
作者单位: 中国科学技术大学
项目金额: 75万元
中文摘要: 本项目主要研究若干基于复杂数据的统计模型中的分布逼近方法和其理论,其 中统计模型包括广义线性模型,响应变量受限制的计量经济模型(Tobit 模型),生存分析中删失数据模型,各种复杂纵向数据模型和高维数据模型. 我们将结合各模型的应用背景,从统计思想,建模,方法和理论等方面进行研究,提出或改进有关的统计方法,深入研究它们的渐近性质,特别着重于带冗余参数的渐近分布的研究.因此,为避免冗余参数的估计,对有关的分布逼近理论问题进行深入的探索.我们将提出新的再抽样方法来进行分布逼近,新的方法既要保证逼近的有效性,同时还要易于计算. 这些问题将可引发一系列的后续研究工作,具有重要的理论意义和应用前景. 所提的方法都要通过数值计算和实际数据例子来验证其效果.
中文关键词: 分布逼近;随机加权;删失回归模型;纵向数据;广义线性模型
英文摘要: In this project, we mainly study distribution approximation methods and develop their theories based on some statistical models for complex data, which includes models as follows:(1)Generalized linear model; (2)Economitrical model (Tobit model) with limited response variable; (3)Survival model with censored data; (4)Complex longitudinal data model and (5)High-dimensional data model. From the backgroud of application, we plan to carry out research about statistic motivation, model construction, statistical method and theory and so on, in which we propose or improve the related statistical methods and furthermore study their asymptotic properties. Especially, it focuses on the asymptotic distribution of parameter estimate with nuisance parameter. Therefore, the issue of distribution approximation theory is intensively investigated to avoid to estimating the nuisance parameter. A new resampling approach techneque is presented for study of distribution approximation, while the proposed method not only has the efficience on the approximation, but also the ability on easy computation. These issues will lead to a series of future work which possesses importance of theory and application. All of the proposed methods will be evaluated by numerical studies and real data examples.
英文关键词: Distribution approximation;Randomly weighting;Censored regression model;Longitudinal data;Generalized linear model