Computing a maximum independent set (MaxIS) is a fundamental NP-hard problem in graph theory, which has important applications in a wide spectrum of fields. Since graphs in many applications are changing frequently over time, the problem of maintaining a MaxIS over dynamic graphs has attracted increasing attention over the past few years. Due to the intractability of maintaining an exact MaxIS, this paper aims to develop efficient algorithms that can maintain an approximate MaxIS with an accuracy guarantee theoretically. In particular, we propose a framework that maintains a $(\frac{\Delta}{2} + 1)$-approximate MaxIS over dynamic graphs and prove that it achieves a constant approximation ratio in many real-world networks. To the best of our knowledge, this is the first non-trivial approximability result for the dynamic MaxIS problem. Following the framework, we implement an efficient linear-time dynamic algorithm and a more effective dynamic algorithm with near-linear expected time complexity. Our thorough experiments over real and synthetic graphs demonstrate the effectiveness and efficiency of the proposed algorithms, especially when the graph is highly dynamic.
翻译:最大独立集( MaxIS) 是图形理论中一个基本的 NP- 硬问题, 它在一系列广泛的领域有着重要的应用。 由于许多应用中的图表随着时间的流逝而变化频繁, 在动态图形中保持 MaxIS 的问题在过去几年中引起了越来越多的注意。 由于保持精确的 MaxIS 的易感性, 本文旨在开发高效的算法, 能够维持近似 MaxIS 的精确性保证理论。 特别是, 我们提议一个框架, 使一个$( frac=Delta ⁇ 2}+ 1, $-1, $- $- apbload MaxIS 相对于动态图形保持一个 动态图形, 并证明它在许多现实世界网络中实现了恒定的近似率。 据我们所知, 这是动态 MaxIS 问题的第一个非三维的近似性结果 。 遵循这个框架, 我们实施高效的线- 动态算法, 以及一个有近线上预期时间复杂性的更有效动态算法 。 我们对真实和合成图形的彻底实验显示了拟议算算法的效能和效率,, 特别是当该图极具高度动态时 。