Let ${\mathcal M}\subset {\mathbb R}^n$ be a $C^2$-smooth compact submanifold of dimension $d$. Assume that the volume of ${\mathcal M}$ is at most $V$ and the reach (i.e. the normal injectivity radius) of ${\mathcal M}$ is greater than $\tau$. Moreover, let $\mu$ be a probability measure on ${\mathcal M}$ whose density on ${\mathcal M}$ is a strictly positive Lipschitz-smooth function. Let $x_j\in {\mathcal M}$, $j=1,2,\dots,N$ be $N$ independent random samples from distribution $\mu$. Also, let $\xi_j$, $j=1,2,\dots, N$ be independent random samples from a Gaussian random variable in ${\mathbb R}^n$ having covariance $\sigma^2I$, where $\sigma$ is less than a certain specified function of $d, V$ and $\tau$. We assume that we are given the data points $y_j=x_j+\xi_j,$ $j=1,2,\dots,N$, modelling random points of ${\mathcal M}$ with measurement noise. We develop an algorithm which produces from these data, with high probability, a $d$ dimensional submanifold ${\mathcal M}_o\subset {\mathbb R}^n$ whose Hausdorff distance to ${\mathcal M}$ is less than $Cd\sigma^2/\tau$ and whose reach is greater than $c{\tau}/d^6$ with universal constants $C,c > 0$. The number $N$ of random samples required depends almost linearly on $n$, polynomially on $\sigma^{-1}$ and exponentially on $d$.
翻译:以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为美元为单位, 以美元为美元为单位, 以美元为单位, 以美元为美元为美元为单位, 以美元为单位, 以美元为美元为单位, 以美元为美元为单位, 以美元为单位, 以美元为美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以某, 以美元为美元为单位, 以美元为单位, 以美元为单位, 以某, 以某, 以美元为单位, 以某, 以某, 以某, 以美元为单位, 以某, 以某, 以美元为美元为美元 以美元为美元为美元为美元为单位, 以 以某,, 以美元为美元为美元 以某, 以某, 以某, 以美元为美元为美元为美元为数 以某数,,,, 以某值为数值为美元为美元为美元为数,, 以 以 以 以 以 以 以 以某, 以某, 以 以 以 以某, 以 以某, 以某, 以某, 以某, 以某, 以