This paper presents new deterministic and distributed low-diameter decomposition algorithms for weighted graphs. In particular, we show that if one can efficiently compute approximate distances in a parallel or a distributed setting, one can also efficiently compute low-diameter decompositions. This consequently implies solutions to many fundamental distance based problems using a polylogarithmic number of approximate distance computations. Our low-diameter decomposition generalizes and extends the line of work starting from [Rozho\v{n}, Ghaffari STOC 2020] to weighted graphs in a very model-independent manner. Moreover, our clustering results have additional useful properties, including strong-diameter guarantees, separation properties, restricting cluster centers to specified terminals, and more. Applications include: -- The first near-linear work and polylogarithmic depth randomized and deterministic parallel algorithm for low-stretch spanning trees (LSST) with polylogarithmic stretch. Previously, the best parallel LSST algorithm required $m \cdot n^{o(1)}$ work and $n^{o(1)}$ depth and was inherently randomized. No deterministic LSST algorithm with truly sub-quadratic work and sub-linear depth was known. -- The first near-linear work and polylogarithmic depth deterministic algorithm for computing an $\ell_1$-embedding into polylogarithmic dimensional space with polylogarithmic distortion. The best prior deterministic algorithms for $\ell_1$-embeddings either require large polynomial work or are inherently sequential. Even when we apply our techniques to the classical problem of computing a ball-carving with strong-diameter $O(\log^2 n)$ in an unweighted graph, our new clustering algorithm still leads to an improvement in round complexity from $O(\log^{10} n)$ rounds [Chang, Ghaffari PODC 21] to $O(\log^{4} n)$.
翻译:本文展示了用于加权图形的新的确定性和分布式低直径分解算法。 特别是, 我们显示, 如果能够在平行或分布式设置中有效计算近距离, 我们也可以有效地计算低直径分解。 因此, 这意味着要解决许多基本的远基问题, 使用多logari数的近距离计算。 我们的低直径分解总和将工作线从 [Rozho\v{n} (Ghaffari STOC 2020) 扩大到以非常依赖模式的方式的加权图表。 此外, 我们的组合结果还有其他有用的特性, 包括强直径保障、 分离特性、 限制集成中心到指定的终端。 应用程序包括: -- 第一次近线性工作以及多端深度的确定性平行算法, 与多端的多端分布式树( LSST) 仍然从多logyricrical 1 开始。 最平行的LSQST 算法需要用 $m\ dicial- nual- logyalalalal_ dal exal ormagial a oral oral oral oral- sal- sal orational lax a.