Smart cities operate on computational predictive frameworks that collect, aggregate, and utilize data from large-scale sensor networks. However, these frameworks are prone to multiple sources of data and algorithmic bias, which often lead to unfair prediction results. In this work, we first demonstrate that bias persists at a micro-level both temporally and spatially by studying real city data from Chattanooga, TN. To alleviate the issue of such bias, we introduce \textit{Fairguard}, a micro-level temporal logic-based approach for fair smart city policy adjustment and generation in complex temporal-spatial domains. The Fairguard framework consists of two phases: first, we develop a static generator that is able to reduce data bias based on temporal logic conditions by minimizing correlations between selected attributes. Then, to ensure fairness in predictive algorithms, we design a dynamic component to regulate prediction results and generate future fair predictions by harnessing logic rules. Evaluations show that logic-enabled static Fairguard can effectively reduce the biased correlations while dynamic Fairguard can guarantee fairness on protected groups at run-time with minimal impact on overall performance.
翻译:智能城市以收集、汇总和利用大型传感器网络数据的计算预测框架运作。然而,这些框架容易出现多种数据和算法偏差来源,往往导致不公平的预测结果。在这项工作中,我们首先通过研究查塔努加(TN)的真城数据,在时间和空间上证明偏差在微观层面持续存在。为了缓解这种偏差问题,我们引入了\textit{Fairguard},这是基于微观时间逻辑的基于时间的逻辑方法,用于公平、智能的城市政策调整和在复杂的时间空间生成。Fairguard框架由两个阶段组成:首先,我们开发一个静态生成器,能够减少基于时间逻辑条件的数据偏差,最大限度地减少选定属性之间的关联。然后,为了确保预测算法的公平性,我们设计一个动态组成部分来调节预测结果,并通过使用逻辑规则来产生未来的公平预测。评估表明,逻辑支持的静态保镖可以有效减少偏差关联,而动态保镖可以保证在运行时对受保护群体公平性的整体业绩影响最小。