Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
翻译:冷点启动问题是实际建议的长期挑战。 大部分现有建议算法依靠广泛的观测数据,对建议设想方案缺乏多少互动。 本文用少见的学习和元学习来处理这些问题。 我们的方法基于以下认识:从几个例子中很好地概括一些实例取决于一种通用的模型初始化和使这一模型适应新出现的任务的有效战略。 为了实现这一目标,我们将特定情景的学习与一个模型-不可知性的连续元学习元件结合起来,并将它们整合成一个完整的端到端框架,即特定情景的序列元件学习者(或S%2元)。 通过这样做,我们的元数据单元数据通过汇集各种预测任务的背景信息,同时通过利用学习到学习的知识有效地适应具体的任务,产生了一个通用的初步模型。 各种真实世界数据集的广泛实验表明,我们提议的模型可以在网上建议中冷点问题的最新艺术上取得重大收益。 部署是在移动道包的前页“ 你喜欢”的猜测会话。