Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.
翻译:在社交网络(如Facebook)的搜索与古典网络搜索提出了不同的挑战:除了查询文本外,还必须考虑到搜索者的上下文以提供相关结果。他们的社会图是此背景的一个组成部分,也是Facebook搜索的一个独特方面。虽然嵌入式检索(EBR)已经用于eb搜索引擎多年,但Facebook搜索仍然主要基于一个布林匹配模型。在本文中,我们讨论了将EBR应用到Facebook搜索系统的技术。我们引入了为个人化搜索的模范语义嵌入而开发的统一嵌入框架,以及基于嵌入式检索在基于反向索引的典型搜索系统中的系统。我们讨论了关于整个系统端到端优化的各种技巧和经验,包括ANN参数调整和全斯塔克优化。最后,我们介绍了我们在两个选定的关于建模的先进课题上的进展。我们用在线A/B实验中观察到的重大指标收益对用于Facebook搜索的垂直搜索的EBR进行了评估。我们认为,该文件将提供有用的洞察力和经验,帮助人们在搜索引擎中开发嵌入式检索系统。