Smart cities operate on computational predictive frameworks that collect, aggregate, and utilize data from large-scale sensor networks. However, these frameworks are prone to multiple sources of data and algorithmic bias, which often lead to unfair prediction results. In this work, we first demonstrate that bias persists at a micro-level both temporally and spatially by studying real city data from Chattanooga, TN. To alleviate the issue of such bias, we introduce Fairguard, a micro-level temporal logic-based approach for fair smart city policy adjustment and generation in complex temporal-spatial domains. The Fairguard framework consists of two phases: first, we develop a static generator that is able to reduce data bias based on temporal logic conditions by minimizing correlations between selected attributes. Then, to ensure fairness in predictive algorithms, we design a dynamic component to regulate prediction results and generate future fair predictions by harnessing logic rules. Evaluations show that logic-enabled static Fairguard can effectively reduce the biased correlations while dynamic Fairguard can guarantee fairness on protected groups at run-time with minimal impact on overall performance.
翻译:智慧城市操作计算预测框架,从大规模传感器网络中收集,汇总和利用数据。然而,这些框架容易受到多种数据和算法偏见的影响,这经常导致不公平的预测结果。在这项工作中,我们首先通过研究田纳西州查塔努加的真实城市数据证明偏见在微观层面上(包括时间和空间)存在。为了缓解这种偏见问题,我们引入了Fairguard,这是一种针对复杂时间空间领域公平的智慧城市政策调整和生成的微观层面基于时间逻辑的方法。 Fairguard框架由两个部分组成:首先,我们开发了一个静态生成器,它能够通过最小化选定属性之间的相关性来基于时间逻辑条件减少数据偏见。然后,为了确保预测算法的公平性,我们设计了一个动态组件来调节预测结果并利用逻辑规则生成未来的公平预测。评估结果显示,基于逻辑的静态Fairguard可以有效地减少相关性偏差,而动态Fairguard可以在运行时保证对受保护人群的公平,并对总体性能影响很小。