Given an affine transformation $T$, we define its Fisher distortion $Dist_F(T)$. We show that the Fisher distortion has Riemannian metric structure and provide an algorithm for finding mean distorting transformation -- namely -- for a given set $\{T_{i}\}_{i=1}^N$ of affine transformations, find an affine transformation $T$ that minimize the overall distortion $\sum_{i=1}^NDist_F^{2}(T^{-1}T_{i}).$ The mean distorting transformation can be useful in some fields -- in particular, we apply it for rendering affine panoramas.
翻译:以松动变换为美元, 我们定义了它的渔业变换 $Dist_F(T)$。我们显示, 渔业变换具有里曼尼度量结构, 并提供了一种算法, 用于寻找中度变换, 即, 对于给定的一套 $Q ⁇ i ⁇ i ⁇ i=1 ⁇ N$a, 找到一个折动变换 $T$, 以尽量减少整体变换 $sum ⁇ i=1 ⁇ NDist_F ⁇ 2}(T ⁇ -1}T ⁇ i} 。 。 平均变换可以在某些领域有用, 尤其是我们应用它来制造全方形变换。