We study two modifications of the Post Correspondence Problem (PCP), namely 1) the bi-infinite version, where it is asked whether there exists a bi-infinite word such that two given morphisms agree on it, and 2) the conjugate version, where we require the images of a solution for two given morphisms are conjugates of each other. For the bi-infinite PCP we show that it is in the class $\Sigma_2^0$ of the arithmetical hierarchy and for the conjugate PCP we give an undecidability proof by reducing it to the word problem for a special type of semi-Thue systems.
翻译:我们研究了对通信后问题的两项修改,即:1)双无限制版本,问其是否存在一个双无限制的单词,使两个特定形态都同意;2)同源版本,我们要求两种特定形态的解决方案图像是彼此相容的。对于双无限制的五氯苯酚,我们证明它属于计算等级的等级值$\Sigma_2 ⁇ 0,对于同源的五氯苯酚,我们通过将它降低到某种特殊类型的半硫系统的词性问题来提供不可减损的证据。