Interval-censored multi-state data arise in many studies of chronic diseases, where the health status of a subject can be characterized by a finite number of disease states and the transition between any two states is only known to occur over a broad time interval. We formulate the effects of potentially time-dependent covariates on multi-state processes through semiparametric proportional intensity models with random effects. We adopt nonparametric maximum likelihood estimation (NPMLE) under general interval censoring and develop a stable expectation-maximization (EM) algorithm. We show that the resulting parameter estimators are consistent and that the finite-dimensional components are asymptotically normal with a covariance matrix that attains the semiparametric efficiency bound and can be consistently estimated through profile likelihood. In addition, we demonstrate through extensive simulation studies that the proposed numerical and inferential procedures perform well in realistic settings. Finally, we provide an application to a major epidemiologic cohort study.
翻译:在许多慢性疾病研究中,出现了跨普查的多州数据,其中,一个学科的健康状况可以以有限的疾病状态为特征,而且知道两个州之间的过渡只在很宽的一段时间内发生。我们通过具有随机效应的半对称成比例密度模型,对多州进程制定潜在的时间性共变效应。我们在一般间隔审查下采用非参数性最大可能性估计法(NPMLE),并开发一个稳定的预期-最大化算法。我们表明,由此产生的参数估计器是一致的,并且与一个可达到半对称效率界限的变量矩阵是相同的,并且可以通过剖面可能性来持续估计。此外,我们通过广泛的模拟研究,证明拟议的数字和推断程序在现实环境中运作良好。最后,我们向一个主要的流行病学群群群研究提供了应用软件。