项目名称: 退化k-Hessian方程解的正则性研究

项目编号: No.11171339

项目类型: 面上项目

立项/批准年度: 2012

项目学科: 数理科学和化学

项目作者: 田谷基

作者单位: 中国科学院武汉物理与数学研究所

项目金额: 40万元

中文摘要: 我们研究退化k-Hessian方程Dirichlet问题的解的正则性或部分正则性,并应用到非线性光学中一个强非线性的椭圆型问题解的性质研究。当非齐次项光滑但在边界上退化时, 寻找边界值函数,严格的(k-1)凸边界以及非齐次项三者之间的相容性条件,以保证全局光滑解的存在性。建立N.V.Krylov 的(退化)正则性理论和N.Trudinger的边界向量场方法之间的联系,得到解的二阶法向导数的边界估计;构造类似于研究Monge-Ampere方程的Legendre变换,把k-Hessian方程转化为一类散度型拟线性退化椭圆方程组,由此得到解的所有二阶导数的连续模估计。当非齐次项仅关于部分变量光滑时,首先利用Levi基本解方法,得到Poisson方程和一致线性椭圆方程解的部分正则性,进而得到非退化k-Hessian方程线性化方程以及本身解的部分正则性,最后得到退化k-Hessian解的部分正则性

中文关键词: 退化k-Hessian方程;完全非线性椭圆方程;正则性;部分正则性;变号解

英文摘要:

英文关键词: degenerate k-Hessian equation;fully nonlinear elliptic equation;regularity;partial regularity;sign-changing solution

成为VIP会员查看完整内容
0

相关内容

NeurIPS 2021 Spotlight | 针对有缺失坐标的聚类问题的核心集
专知会员服务
15+阅读 · 2021年11月27日
专知会员服务
21+阅读 · 2021年9月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
139+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
机器学习著名定理之—No Free Lunch定理详解
PaperWeekly
0+阅读 · 2022年3月4日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Differentiable Time-Frequency Scattering in Kymatio
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关主题
相关VIP内容
NeurIPS 2021 Spotlight | 针对有缺失坐标的聚类问题的核心集
专知会员服务
15+阅读 · 2021年11月27日
专知会员服务
21+阅读 · 2021年9月23日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
139+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关资讯
机器学习著名定理之—No Free Lunch定理详解
PaperWeekly
0+阅读 · 2022年3月4日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
求解稀疏优化问题——半光滑牛顿方法
极市平台
45+阅读 · 2019年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员