Prophet inequalities for rewards maximization are fundamental results from optimal stopping theory with several applications to mechanism design and online optimization. We study the cost minimization counterpart of the classical prophet inequality, where one is facing a sequence of costs $X_1, X_2, \dots, X_n$ in an online manner and must ''stop'' at some point and take the last cost seen. Given that the $X_i$'s are independent, drawn from known distributions, the goal is to devise a stopping strategy $S$ (online algorithm) that minimizes the expected cost. We first observe that if the $X_i$'s are not identically distributed, then no strategy can achieve a bounded approximation, no matter if the arrival order is adversarial or random. This leads us to consider the case where the $X_i$'s are I.I.D.. For the I.I.D. case, we give a complete characterization of the optimal stopping strategy. We show that it achieves a (distribution-dependent) constant-factor approximation to the prophet's cost for almost all distributions and that this constant is tight. In particular, for distributions for which the integral of the hazard rate is a polynomial $H(x) = \sum_{i=1}^k a_i x^{d_i}$, where $d_1 < \dots < d_k$, the approximation factor is $\lambda(d_1)$, a decreasing function of $d_1$. Furthermore, for MHR distributions, we show that this constant is at most $2$, and this is again tight. We also analyze single-threshold strategies for the cost prophet inequality problem. We design a threshold that achieves a $\operatorname{O}(\operatorname{polylog}n)$-factor approximation, where the exponent in the logarithmic factor is a distribution-dependent constant, and we show a matching lower bound. We believe that our results are of independent interest for analyzing approximately optimal (posted price-style) mechanisms for procuring items.
翻译:用于奖励最大化的先知不平等是来自最佳停止理论的基本结果 { 最佳停止理论 { 机制设计和在线优化的多种应用 。 我们首先研究传统先知不平等的成本最小化对应方, 在这种不平等中, 一个人以在线方式面临一系列成本 $X_ 1, X_ 2,\ dots, X_ n$ 必须在某个点上“ stop ” 并承担最后的成本 。 $X_ i$ 是独立的, 从已知的分布中提取的, 目标是设计一个停止战略$( 在线算法) 的完整描述, 以尽可能降低预期成本。 我们首先观察, 如果 $X_ i$ 的分布不完全相同, 那么任何战略都无法实现约束性近似的近似值, 不论抵达订单是对抗性还是随机的。 这让我们考虑一个案例, $_ i i add. d. 利 利 的利息是独立的 。 对于 I. I. D. 案例, 我们给出一个最合适的停止战略, 我们显示一个( MI) 美元 的( liver) liver) imal) im) imal_ liver liver lader max distral max a.