We introduce two new tools to assess the validity of statistical distributions. These tools are based on components derived from a new statistical quantity, the $comparison$ $curve$. The first tool is a graphical representation of these components on a $bar$ $plot$ (B plot), which can provide a detailed appraisal of the validity of the statistical model, in particular when supplemented by acceptance regions related to the model. The knowledge gained from this representation can sometimes suggest an existing $goodness$-$of$-$fit$ test to supplement this visual assessment with a control of the type I error. Otherwise, an adaptive test may be preferable and the second tool is the combination of these components to produce a powerful $\chi^2$-type goodness-of-fit test. Because the number of these components can be large, we introduce a new selection rule to decide, in a data driven fashion, on their proper number to take into consideration. In a simulation, our goodness-of-fit tests are seen to be powerwise competitive with the best solutions that have been recommended in the context of a fully specified model as well as when some parameters must be estimated. Practical examples show how to use these tools to derive principled information about where the model departs from the data.
翻译:我们引入了两个新的工具来评估统计分布的有效性。 这些工具基于来自新统计数量($comparion $$curve$)的元件。 第一个工具是这些元件的图形化表示,在美元(B区块)上展示这些元件,可以详细评估统计模型的有效性,特别是在得到与模型有关的接受区域的补充时。从这一表述中获得的知识有时可以表明,现有的美元-美元-美元-适值美元测试,以控制I类错误来补充这一直观评估。 否则,适应性测试可能是可取的,第二个工具是这些元件的组合,以产生一个强大的 $\chi ⁇ 2$- 美元- 一类的优劣测试。由于这些元件的数量可能很大,我们引入了新的选择规则,以数据驱动的方式决定它们的适当数字。在模拟中,我们的优异测试被认为与在完全指定的模型中建议的最佳解决方案具有竞争力,并且在某些参数中必须加以估计。实际例子表明如何使用这些工具。