Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios. Existing DG methods assume that the do-main label is known.However, in real-world applications, thecollected dataset always contains mixture domains, where thedomain label is unknown. In this case, most of existing meth-ods may not work. Further, even if we can obtain the domainlabel as existing methods, we think this is just a sub-optimalpartition. To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels, which iteratively divides mixture domains viadiscriminative domain representation and trains a generaliz-able face anti-spoofing with meta-learning. Specifically, wedesign a domain feature based on Instance Normalization(IN) and propose a domain representation learning module(DRLM) to extract discriminative domain features for cluster-ing. Moreover, to reduce the side effect of outliers on cluster-ing performance, we additionally utilize maximum mean dis-crepancy (MMD) to align the distribution of sample featuresto a prior distribution, which improves the reliability of clus tering. Extensive experiments show that the proposed methodoutperforms conventional DG-based face anti-spoofing meth-ods, including those utilizing domain labels. Furthermore, weenhance the interpretability through visualizatio
翻译:基于域常规化(DG) 的面部反排版法因其强健而引起越来越多的关注。 现有的 DG 方法假定, 已知的域名标签是已知的。 但是, 在现实世界应用程序中, 收集的数据集总是包含混合域, 其域名未知。 在这种情况下, 大部分现有的甲基药物可能不会起作用 。 此外, 即使我们能以现有方法获得域名标签, 我们认为这只是一个次最佳的域名学习模式。 为了克服限制, 我们提议, 域名调整元版学习(D2AM) 领域不使用实域名标签, 将混合域代代相隔开来。 然而, 在真实世界应用程序中, 收集的数据集总是包含混合域名词。 具体地说, 我们设计了一个基于标准正常化(IN) 的域名化学习模块, 并提议一个域名代表学习模块(DRLMM) 来提取基于集群的域名化域域域名特性。 此外, 我们提议在不使用直观域名化的域名化(DMD) 上减少外校正定义的外效果效果, 我们还利用了前的域名化方法, 改进了传统的域域域名化的域名分级分配。