Face recognition systems are usually faced with unseen domains in real-world applications and show unsatisfactory performance due to their poor generalization. For example, a well-trained model on webface data cannot deal with the ID vs. Spot task in surveillance scenario. In this paper, we aim to learn a generalized model that can directly handle new unseen domains without any model updating. To this end, we propose a novel face recognition method via meta-learning named Meta Face Recognition (MFR). MFR synthesizes the source/target domain shift with a meta-optimization objective, which requires the model to learn effective representations not only on synthesized source domains but also on synthesized target domains. Specifically, we build domain-shift batches through a domain-level sampling strategy and get back-propagated gradients/meta-gradients on synthesized source/target domains by optimizing multi-domain distributions. The gradients and meta-gradients are further combined to update the model to improve generalization. Besides, we propose two benchmarks for generalized face recognition evaluation. Experiments on our benchmarks validate the generalization of our method compared to several baselines and other state-of-the-arts. The proposed benchmarks will be available at https://github.com/cleardusk/MFR.
翻译:脸部识别系统通常面临现实世界应用中的隐蔽领域,并表现出因不全面化而不能令人满意的业绩。例如,一个经过良好训练的网络数据模型无法处理监视情景中的ID vs. Spot任务。在本文中,我们的目标是学习一个通用模型,可以直接处理新的隐蔽领域,而无需任何模式更新。为此,我们建议通过名为Metaface 识别(MFR)的元学习系统,采用新的面部识别方法。MFR将源/目标域转移与一个元优化目标目标结合起来,这要求模型不仅学习综合源域的有效表述,而且学习综合目标域的有效表述。具体地说,我们通过一个域级取样战略建立域档分批,并在综合源/目标域上获得反馈的梯度/元梯度/元梯度。梯度和元梯度将进一步结合来更新模型,以改进概括化。此外,我们提出了两个通用面部识别评估基准。关于我们基准的实验将验证我们方法与若干基线和其他州/州/州/州/州级基准的通用化。拟议基准将在若干基准中进行。