Lloyd Shapley's cooperative value allocation theory is a central concept in game theory that is widely used in various fields to allocate resources, assess individual contributions, and determine fairness. The Shapley value formula and his four axioms that characterize it form the foundation of the theory. Shapley value can be assigned only when all cooperative game players are assumed to eventually form the grand coalition. The purpose of this paper is to extend Shapley's theory to cover value allocation at every partial coalition state. To achieve this, we first extend Shapley axioms into a new set of five axioms that can characterize value allocation at every partial coalition state, where the allocation at the grand coalition coincides with the Shapley value. Second, we present a stochastic path integral formula, where each path now represents a general coalition process. This can be viewed as an extension of the Shapley formula. We apply these concepts to provide a dynamic interpretation and extension of the value allocation schemes of Shapley, Nash, Kohlberg and Neyman. This generalization is made possible by taking into account Hodge calculus, stochastic processes, and path integration of edge flows on graphs. We recognize that such generalization is not limited to the coalition game graph. As a result, we define Hodge allocation, a general allocation scheme that can be applied to any cooperative multigraph and yield allocation values at any cooperative stage.
翻译:Lloyd Shapley的合作价值分配理论是游戏理论的核心概念,在各个领域广泛使用,用于分配资源、评估个人贡献和确定公平性。 Shapley 值公式及其四个轴值构成理论的基础。 只有当所有合作游戏玩家最终假定组成大联盟时, 才能指定Shapley 值。 本文的目的是扩展Shapley 的理论, 以涵盖每个部分联盟国的值分配。 为了实现这一点, 我们首先将Shapley exiom 扩展为一套新的五种轴值, 使每一个部分联盟国的值分配特征化, 大联盟的分配与Shapley 值相吻合。 其次, 我们提出一条随机路径整体的组合公式组合公式组合公式, 将我们应用到普通的公式组合模型, 将我们应用到普通的公式组合进程, 将我们使用任何普通的公式组合进程, 将我们使用一个普通的组合进程 定义一个普通的组合进程 。</s>