With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.
翻译:随着信息技术的爆炸性增长,多视图图表数据变得日益普遍和宝贵。大多数现有的多视角组合技术要么侧重于多图表或多视图属性的情景。在本文中,我们提出了一个多视图分类图表数据通用框架。具体地说,在对比性学习的成功启发下,我们提出了多视角对比图形组合方法来学习一个共识图形,因为原始图表可能是吵闹或不完整的,不能直接适用。我们的方法由两个关键步骤组成:我们首先通过图表过滤将不受欢迎的高频噪音过滤出来,同时保留图形几何特征,然后通过平滑的节点表示;然后我们学习一个以图表对比性损失为常规的共识图表。关于几个基准数据集的结果显示了我们方法在现状方法方面的优势。特别是,我们的简单方法比现有的深层学习方法要好。