Depth quantile functions (DQF) encode geometric information about a point cloud via functions of a single variable, whereas each observation in a data set can be associated with a single function. These functions can then be easily plotted. This is true regardless of the dimension of the data, and in fact holds for object data as well, provided a mapping to an RKHS exists. This visualization aspect proves valuable in the case of anomaly detection, where a universal definition of what constitutes an anomaly is lacking. A relationship drawn between anomalies and antimodes provides a strategy for identifying anomalous observations through visual examination of the DQF plot. The DQF in one dimension is explored, providing intuition for its behavior generally and connections to several existing methodologies are made clear. For higher dimensions and object data, the adaptive DQF is introduced and explored on several data sets with promising results.
翻译:深度量函数( DQF) 通过单个变量的函数对点云的几何信息进行编码, 而数据集中的每个观测可以与单个函数相联系。 这些功能可以很容易地绘制。 不论数据的范围如何, 并且事实上也保留着物体数据, 这是事实, 只要存在RKHS 的映射。 在异常探测中, 这个可视化方面证明是有价值的, 缺乏对异常现象的通用定义。 异常和反模式之间的关系提供了一个战略, 通过对 DQF 绘图进行直观检查来识别异常观测。 一个层面的DQF 被探索, 提供其行为的一般直觉, 并明确了与若干现有方法的连接。 对于更高的尺寸和对象数据, 引入了适应性DQF, 并在几个数据组中进行探索, 并得出有希望的结果 。