Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in https://github.com/tsinghua-fib-lab/GNN-Recommender-Systems.
翻译:推荐人系统是当今互联网上最重要的信息服务之一。 最近, 图形神经网络已成为推荐人系统的最新最新方法。 在此调查中, 我们对基于图形神经网络的推荐人系统中的文献进行全面审查。 我们首先介绍建议人系统和图形神经网络开发的背景和历史。 对于建议人系统, 总体而言, 有四个方面可以对现有工作进行分类: 阶段、 情景、 目标和应用。 对于图形神经网络, 现有方法包括两类, 光谱模型和空间模型。 然后我们讨论将图形神经网络应用到推荐人系统中的动机, 主要包括高顺序连接、 数据的结构属性以及强化的监督信号。 然后我们系统地分析图表构造、 嵌入传播/ 聚合、 模型优化和计算效率方面的挑战。 之后, 我们主要对基于图形网络的推荐人系统的现有大量工作进行综合概述, 上面的分类包括光谱模型模型模型模型模型模型和空间模型。 最后, 我们提出关于公开问题的讨论, 以及未来方向与这个区域的代表数据库/ 。