We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free Variational Autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven models. We focus on two classes of SDE models: regime switching models and L\'evy additive processes. By projecting historical surfaces onto the space of SDE model parameters, we obtain a distribution on the parameter subspace faithful to the data on which we then train a VAE. Arbitrage-free IV surfaces are then generated by sampling from the posterior distribution on the latent space, decoding to obtain SDE model parameters, and finally mapping those parameters to IV surfaces. We further refine the VAE model by including conditional features and demonstrate its superior generative out-of-sample performance.
翻译:我们提出了一种混合方法,通过将无模型变异自动计算器(VAE)与连续时间随机差分方程(SDE)驱动模型相结合,产生与历史数据相符的无套利隐含波动(IV)表面。我们侧重于两种SDE模型:系统转换模型和L'evy添加过程。通过在SDE模型参数空间上投射历史表面,我们获得了与我们随后培训VAE的数据忠实的参数子空间的分布。然后,通过从潜空的后方分布取样,解码以获得SDE模型参数,并最终将这些参数绘制到IV表面。我们进一步完善了VAE模型,包括有条件特征,并展示其优异基因外标的性能。