Materialized model query aims to find the most appropriate materialized model as the initial model for model reuse. It is the precondition of model reuse, and has recently attracted much attention. Nonetheless, the existing methods suffer from low privacy protection, limited range of applications, and inefficiency since they do not construct a suitable metric to measure the target-related knowledge of materialized models. To address this, we present MMQ, a privacy-protected, general, efficient, and effective materialized model query framework. It uses a Gaussian mixture-based metric called separation degree to rank materialized models. For each materialized model, MMQ first vectorizes the samples in the target dataset into probability vectors by directly applying this model, then utilizes Gaussian distribution to fit for each class of probability vectors, and finally uses separation degree on the Gaussian distributions to measure the target-related knowledge of the materialized model. Moreover, we propose an improved MMQ (I-MMQ), which significantly reduces the query time while retaining the query performance of MMQ. Extensive experiments on a range of practical model reuse workloads demonstrate the effectiveness and efficiency of MMQ.
翻译:材料化模型查询旨在寻找最适当的实际模型,作为模型再利用的初步模式,这是模型再利用的先决条件,最近引起人们的极大注意;然而,现有方法由于隐私保护程度低、应用范围有限、效率低而效率不高,因为它们没有建立衡量与目标有关的模型知识的适当衡量标准;为此,我们提出MMQ,一个隐私保护、一般、高效和有效的实际化模型查询框架;它使用高斯的基于混合物的衡量标准,称为分级标准,称为分级标准;对于每个材料化模型,MMQ首先通过直接应用这一模型将目标数据集中的样品向概率矢量化,然后利用Gausian的分布,以适合每一类概率矢量,最后在戈斯分布上使用分离学位,以衡量与目标有关的材料化模型知识;此外,我们提议改进MMQ(I-MMQ),这大大缩短了查询时间,同时保留MQ的查询性能;对一系列实际模型再利用工作量进行广泛的试验,以显示MMQ的有效性和效率。