The aim of this work is to provide the first strong convergence result of numerical approximation of a general time-fractional second order stochastic partial differential equation involving a Caputo derivative in time of order $\alpha\in(\frac 12; 1)$ and driven simultaneously by a multiplicative standard Brownian motion and additive fBm with Hurst parameter $H\in(\frac 12, 1)$, more realistic to model the random effects on transport of particles in medium with thermal memory. We prove the existence and uniqueness results and perform the spatial discretization using the finite element and the temporal discretization using a fractional exponential integrator scheme. We provide the temporal and spatial convergence proofs for our fully discrete scheme and the result shows that the convergence orders depend on the regularity of the initial data, the power of the fractional derivative, and the Hurst parameter $H$.
翻译:这项工作的目的是提供一个总时间折叠第二顺序局部差异方程式的数值近似的第一个强烈趋同结果,该公式涉及在时间顺序为$\alpha\in(frac 12;)1美元(frac 12);1美元(frac 12;1美元)时使用卡普托衍生物,同时由一种倍增效应标准布朗运动和富尔斯特参数为$H\in(\frac 12,1美元)添加的fBm(fBm)驱动,更现实地模拟对含有热内存的中粒子的迁移产生的随机影响。我们证明存在和独特性结果,并利用一个分数指数集集集集法计划进行空间分散化。我们为我们的完全离散计划提供了时间和空间趋同证明,结果显示这些趋同顺序取决于初始数据的规律性、分数衍生物的力量和赫斯特参数$H$。