In this paper, the Lie symmetry analysis is proposed for a space-time convection-diffusion fractional differential equations with the Riemann-Liouville derivative by (2+1) independent variables and one dependent variable. We find a reduction form of our governed fractional differential equation using the similarity solution of our Lie symmetry. One-dimensional optimal system of Lie symmetry algebras is found. We present a computational method via the spectral method based on Bernstein's operational matrices to solve the two-dimensional fractional heat equation with some initial conditions.
翻译:在本文中,建议对里曼-利乌维尔衍生物(2+1)独立变量和一个依附变量的时时对流分差方程式进行对称分析。我们发现一个受管理的分差方程式的递减形式,该方程式使用我们利利对称的相似性方程式。发现一个一维最佳的利对流代数仪系统。我们通过基于伯恩斯坦操作矩阵的光谱法,以初步条件解决二维分热方程式。