Hessian captures important properties of the deep neural network loss landscape. Previous works have observed low rank structure in the Hessians of neural networks. In this paper, we propose a decoupling conjecture that decomposes the layer-wise Hessians of a network as the Kronecker product of two smaller matrices. We can analyze the properties of these smaller matrices and prove the structure of top eigenspace random 2-layer networks. The decoupling conjecture has several other interesting implications - top eigenspaces for different models have surprisingly high overlap, and top eigenvectors form low rank matrices when they are reshaped into the same shape as the corresponding weight matrix. All of these can be verified empirically for deeper networks. Finally, we use the structure of layer-wise Hessian to get better explicit generalization bounds for neural networks.
翻译:Hesian 捕捉了深神经网络损失景观的重要特性。 先前的工程观测到神经网络的赫西人中低级结构。 在本文中, 我们提出一个脱钩的猜想, 分解一个网络的多层的赫西人作为Kronecker的两个较小矩阵的产物。 我们可以分析这些小矩阵的特性, 并证明顶层的脑空间随机2层网络的结构。 脱钩的猜想还具有其他几个有趣的影响 - 不同模型的顶层天体有惊人的高度重叠, 当它们被重塑成与相应的重量矩阵相同的形状时, 顶层天体生物构成低级矩阵。 所有这些都可以通过实验来验证更深的网络。 最后, 我们用层的海斯人结构来为神经网络获得更清晰的统括线。