Jacobian and Hessian regularization aim to reduce the magnitude of the first and second-order partial derivatives with respect to neural network inputs, and they are predominantly used to ensure the adversarial robustness of image classifiers. In this work, we generalize previous efforts by extending the target matrix from zero to any matrix that admits efficient matrix-vector products. The proposed paradigm allows us to construct novel regularization terms that enforce symmetry or diagonality on square Jacobian and Hessian matrices. On the other hand, the major challenge for Jacobian and Hessian regularization has been high computational complexity. We introduce Lanczos-based spectral norm minimization to tackle this difficulty. This technique uses a parallelized implementation of the Lanczos algorithm and is capable of effective and stable regularization of large Jacobian and Hessian matrices. Theoretical justifications and empirical evidence are provided for the proposed paradigm and technique. We carry out exploratory experiments to validate the effectiveness of our novel regularization terms. We also conduct comparative experiments to evaluate Lanczos-based spectral norm minimization against prior methods. Results show that the proposed methodologies are advantageous for a wide range of tasks.
翻译:Jacobian 和 Hessian 的正规化旨在缩小神经网络投入方面第一和第二级部分衍生物的规模,这些衍生物主要用于确保图像分类者的对抗性强。在这项工作中,我们通过将目标矩阵表从零扩展至任何允许高效矩阵摄取产品的矩阵表,对以前的工作加以推广,将目标矩阵表从零扩展至任何允许高效矩阵摄取产品的矩阵表;提议的范例使我们能够在正方形Jacobian 和Hessian 基质上建立新型的对称或对称性。另一方面,Jacobian 和 Hessian 的正规化面临的主要挑战是高计算复杂性。我们引入了基于Lanczos 的光谱规范最小化来解决这一难题。这一技术利用了平行的兰克佐斯算法,能够有效和稳定地规范大型的雅各布和赫斯基质矩阵表。为拟议的范式和技术提供了理论依据和经验证据。我们进行了探索性实验,以验证我们的新规范条款的有效性。我们还进行了比较性实验,以对照先前的方法来评估以兰克索为基础的光谱标准最小化的最小化。结果显示,拟议的方法对于广泛的任务是有利的。结果表明,拟议的方法是有利的。