The fractional differential equation $L^\beta u = f$ posed on a compact metric graph is considered, where $\beta>\frac14$ and $L = \kappa - \frac{\mathrm{d}}{\mathrm{d} x}(H\frac{\mathrm{d}}{\mathrm{d} x})$ is a second-order elliptic operator equipped with certain vertex conditions and sufficiently smooth and positive coefficients $\kappa,H$. We demonstrate the existence of a unique solution for a general class of vertex conditions and derive the regularity of the solution in the specific case of Kirchhoff vertex conditions. These results are extended to the stochastic setting when $f$ is replaced by Gaussian white noise. For the deterministic and stochastic settings under generalized Kirchhoff vertex conditions, we propose a numerical solution based on a finite element approximation combined with a rational approximation of the fractional power $L^{-\beta}$. For the resulting approximation, the strong error is analyzed in the deterministic case, and the strong mean squared error as well as the $L_2(\Gamma\times \Gamma)$-error of the covariance function of the solution are analyzed in the stochastic setting. Explicit rates of convergences are derived for all cases. Numerical experiments for the example ${L = \kappa^2 - \Delta, \kappa>0}$ are performed to illustrate the theoretical results.


翻译:分差方程式 $L ⁇ beta u = f$ 在紧凑度图中显示 $\ beta ⁇ frac14$ 和 $L =\ kappa =\ kappa -\ frac\ mathrm{d\ mathrm{d} x} (H\\ flac\\ matthrm{d\ d}) 是一个二级的椭圆操作器,配有某些顶端条件和足够顺畅和正系数 $\ kppappa,H$。 我们证明对于一般的顶端条件类别存在一种独特的解决方案, 并得出在Kirchhoff 顶端条件的具体情况下的解决方案的规律性2\ $\ flac\ 和 $ $\ $\ = maqalcrealal decrial=Gral decregial_ droisal dealal ral_ droisal ex.

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员