We study joint learning of Convolutional Neural Network (CNN) and Transformer for vision-language pre-training (VLPT) which aims to learn cross-modal alignments from millions of image-text pairs. State-of-the-art approaches extract salient image regions and align regions with words step-by-step. As region-based visual features usually represent parts of an image, it is challenging for existing vision-language models to fully understand the semantics from paired natural languages. In this paper, we propose SOHO to "See Out of tHe bOx" that takes a whole image as input, and learns vision-language representation in an end-to-end manner. SOHO does not require bounding box annotations which enables inference 10 times faster than region-based approaches. In particular, SOHO learns to extract comprehensive yet compact image features through a visual dictionary (VD) that facilitates cross-modal understanding. VD is designed to represent consistent visual abstractions of similar semantics. It is updated on-the-fly and utilized in our proposed pre-training task Masked Visual Modeling (MVM). We conduct experiments on four well-established vision-language tasks by following standard VLPT settings. In particular, SOHO achieves absolute gains of 2.0% R@1 score on MSCOCO text retrieval 5k test split, 1.5% accuracy on NLVR$^2$ test-P split, 6.7% accuracy on SNLI-VE test split, respectively.
翻译:我们共同学习进化神经网络(CNN)和变异器的视觉语言预培训前(VLPT),目的是从成百万成百万成百万的图像文本中学习跨模式的校正。 最先进的方法将突出的图像区域提取成色,并将区域与字词逐步地对齐。 以区域为基础的视觉特征通常代表图像的一部分, 对现有视觉语言模型来说, 完全理解配对自然语言的语义具有挑战性。 在本文中, 我们建议 SOHO 将“ 见以整幅图像作为输入, 以端对端的方式学习视觉语言的表达方式。 SOHO并不要求捆绑框说明, 能够比以区域为基础的方法更快10倍地推断。 特别是, SOHO学会通过便于交叉理解的视觉字典(VD), VDD旨在代表类似语义语言的一致的视觉抽象取性。 我们更新了在预培训任务中所使用的视觉语言精度的精确度, 在VV- IML 标准测试中,, 分别通过SV 测试 测试 的SL 实现 5 标准的SBMMMM 。