In this contribution, a wave equation with a time-dependent variable-order fractional damping term and a nonlinear source is considered. Avoiding the circumstances of expressing the nonlinear variable-order fractional wave equations via closed-form expressions in terms of special functions, we investigate the existence and uniqueness of this problem with Rothe's method. First, the weak formulation for the considered wave problem is proposed. Then, the uniqueness of a solution is established by employing Gr\"onwall's lemma. The Rothe scheme's basic idea is to use Rothe functions to extend the solutions on single-time steps over the entire time frame. Inspired by that, we next introduce a uniform mesh time-discrete scheme based on a discrete convolution approximation in the backward sense. By applying some reasonable assumptions to the given data, we can predict a priori estimates for the time-discrete solution. Employing these estimates side by side with Rothe functions leads to proof of the solution's existence over the whole time interval. Finally, the full discretisation of the problem is introduced by invoking Galerkin spectral techniques in the spatial direction, and numerical examples are given.


翻译:本文考虑带有时间依赖的非线性变分分数阶阻尼和源项的波动方程。通过Rothe方法避免在特殊函数方面表达非线性变分分数阶波动方程的情况,我们研究了该问题的存在性和唯一性。首先,提出了所考虑波浪问题的弱形式。接着,利用格朗沃尔引理建立了解的唯一性。Rothe方案的基本思想是利用Rothe函数将单个时间步骤上的解扩展到整个时间框架上。受此启发,我们接下来引入了一种基于后向离散卷积逼近的统一网格时间离散方案。通过对已知数据施加一些合理的假设,我们可以预测时间离散解的先验估计。同时使用这些估计和Rothe函数证明了解在整个时间间隔上的存在性。最后,通过在空间方向上调用Galerkin谱技术,引入了问题的全离散化,并提供了数值例子。

0
下载
关闭预览

相关内容

【ICDM2022教程】多目标优化与推荐,173页ppt
专知会员服务
44+阅读 · 2022年12月24日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最全机器学习优化器Optimizer汇总
极市平台
0+阅读 · 2022年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
最全机器学习优化器Optimizer汇总
极市平台
0+阅读 · 2022年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员