Given an undirected graph $G$ whose edge weights change over $s$ time slots, the sub-tree scheduling for wireless sensor networks with partial coverage asks to partition the vertices of $G$ in $s$ non-empty trees such that the total weight of the trees is minimized. In this note we show that the problem is NP-hard in both the cases where $s$ $(i)$ is part of the input and $(ii)$ is a fixed instance parameter. In both our proofs we reduce from the cardinality Steiner tree problem. We additionally give polynomial-time algorithms for structured inputs of the problem.
翻译:鉴于一个非方向图$G$,其边际重量变化超过美元的时间档,部分覆盖的无线传感器网络次树排期要求以非空树以美元将峰值分配为G$,这样树木的总重量就最小化了。在本说明中,我们表明,在美元(一)是投入的一部分和美元(二)是固定实例参数的两种情况中,问题都是NP硬的。在我们的两种证据中,我们从主要成分施泰纳树上的问题中都减少了。我们另外为问题的结构性投入提供了多时算法。