The problems of determining the minimum-sized \emph{identifying}, \emph{locating-dominating} and \emph{open locating-dominating codes} of an input graph are special search problems that are challenging from both theoretical and computational viewpoints. In these problems, one selects a dominating set $C$ of a graph $G$ such that the vertices of a chosen subset of $V(G)$ (i.e. either $V(G)\setminus C$ or $V(G)$ itself) are uniquely determined by their neighborhoods in $C$. A typical line of attack for these problems is to determine tight bounds for the minimum codes in various graphs classes. In this work, we present tight lower and upper bounds for all three types of codes for \emph{block graphs} (i.e. diamond-free chordal graphs). Our bounds are in terms of the number of maximal cliques (or \emph{blocks}) of a block graph and the order of the graph. Two of our upper bounds verify conjectures from the literature - with one of them being now proven for block graphs in this article. As for the lower bounds, we prove them to be linear in terms of both the number of blocks and the order of the block graph. We provide examples of families of block graphs whose minimum codes attain these bounds, thus showing each bound to be tight.
翻译:确定输入图形最小大小 \ empph{ 识别 } 、 emph{ 分配- 位值 } 和 emph{ 开放定位- 位值代码 的问题都是从理论和计算角度都具有挑战性的特殊的搜索问题。 在这些问题中, 一个人选择了一张图形$G 的标定 $C$ 的标定 。 这样, 所选择的 $V( G) 子集( 即 $V( G)\ setminus C$ 或 $V( G) 本身 ) 的顶端点是 由他们的邻居以 $C 来决定的。 这些问题的典型约束线是确定各种图形类别中最小代码的严格界限 。 在这项工作中, 我们为 \ emph{ block 图表中所有三种类型的代码( 即无钻石的 chordaldal 图表) 。 我们的边框是其最大 cliques ( ormph{ blates) 由他们以 $ $ $ C$ C$ c$ c$ c$ c$ c$ c$ c$ c$ c$ 来决定 。 。 。 。 。 每个 rub rude 和 ruderelate bre cre rudeal be be a clatels be be coolf creme 提供 和 的 lib lib lib lib cude 。</s>