The problems of determining the minimum-sized \emph{identifying}, \emph{locating-dominating} and \emph{open locating-dominating codes} of an input graph are special search problems that are challenging from both theoretical and computational viewpoints. In these problems, one selects a dominating set $C$ of a graph $G$ such that the vertices of a chosen subset of $V(G)$ (i.e. either $V(G)\setminus C$ or $V(G)$ itself) are uniquely determined by their neighborhoods in $C$. A typical line of attack for these problems is to determine tight bounds for the minimum codes in various graphs classes. In this work, we present tight lower and upper bounds for all three types of codes for \emph{block graphs} (i.e. diamond-free chordal graphs). Our bounds are in terms of the number of maximal cliques (or \emph{blocks}) of a block graph and the order of the graph. Two of our upper bounds verify conjectures from the literature - with one of them being now proven for block graphs in this article. As for the lower bounds, we prove them to be linear in terms of both the number of blocks and the order of the block graph. We provide examples of families of block graphs whose minimum codes attain these bounds, thus showing each bound to be tight.


翻译:确定输入图形最小大小 \ empph{ 识别 } 、 emph{ 分配- 位值 } 和 emph{ 开放定位- 位值代码 的问题都是从理论和计算角度都具有挑战性的特殊的搜索问题。 在这些问题中, 一个人选择了一张图形$G 的标定 $C$ 的标定 。 这样, 所选择的 $V( G) 子集( 即 $V( G)\ setminus C$ 或 $V( G) 本身 ) 的顶端点是 由他们的邻居以 $C 来决定的。 这些问题的典型约束线是确定各种图形类别中最小代码的严格界限 。 在这项工作中, 我们为 \ emph{ block 图表中所有三种类型的代码( 即无钻石的 chordaldal 图表) 。 我们的边框是其最大 cliques ( ormph{ blates) 由他们以 $ $ $ C$ C$ c$ c$ c$ c$ c$ c$ c$ c$ c$ 来决定 。 。 。 。 。 每个 rub rude 和 ruderelate bre cre rudeal be be a clatels be be coolf creme 提供 和 的 lib lib lib lib cude 。</s>

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员