In this paper, we propose new algorithms for evacuation problems defined on dynamic flow networks. A dynamic flow network is a directed graph in which source nodes are given supplies (i.e., the number of evacuees) and a single sink node is given a demand (i.e., the maximum number of acceptable evacuees). The evacuation problem seeks a dynamic flow that sends all supplies from sources to the sink such that its demand is satisfied in the minimum feasible time horizon. For this problem, the current best algorithms are developed by Schl\"oter (2018) and Kamiyama (2019), which run in strongly polynomial time but with highorder polynomial time complexity because they use submodular function minimization as a subroutine. In this paper, we propose new algorithms that do not explicitly execute submodular function minimization, and we prove that they are faster than those by Schl\"oter (2018) and Kamiyama (2019) when an input network is restricted such that the sink has a small in-degree and every edge has the same capacity.
翻译:在本文中, 我们为动态流量网络定义的疏散问题提出新的算法。 动态流量网络是一个定向图, 给源节点( 即被疏散者的数量) 和单一汇节点提供需求( 可接受的疏散者的最大数量 ) 。 疏散问题寻求动态流, 将所有源的供给发送到汇中, 从而在最短可行的时间范围内满足其需求。 对于这个问题, 目前的最佳算法是由Schl\'oter (2018年) 和 Kamiyama (2019年) 开发的, 它们是在强烈的多元时间里运行, 但却具有高度的多波级多波段时间复杂性, 因为它们使用亚调函数作为子程程。 在本文中, 我们提出新的算法, 不明确地执行亚调函数最小化, 我们证明它们比Schl\'oter ( 2018年) 和 Kamiyama (2019年) 更快, 当输入网络受到限制时, 当一个输入网络受到限制时, 这样的输入网络的深度小, 并且每个边缘都有相同的能力 。</s>