In online interval scheduling, the input is an online sequence of intervals, and the goal is to accept a maximum number of non-overlapping intervals. In the more general disjoint path allocation problem, the input is a sequence of requests, each involving a pair of vertices of a known graph, and the goal is to accept a maximum number of requests forming edge-disjoint paths between accepted pairs. These problems have been studied under extreme settings without information about the input or with error-free advice. We study an intermediate setting with a potentially erroneous prediction that specifies the set of intervals/requests forming the input sequence. For both problems, we provide tight upper and lower bounds on the competitive ratios of online algorithms as a function of the prediction error. For disjoint path allocation, our results rule out the possibility of obtaining a better competitive ratio than that of a simple algorithm that fully trusts predictions, whereas, for interval scheduling, we develop a superior algorithm. We also present asymptotically tight trade-offs between consistency (competitive ratio with error-free predictions) and robustness (competitive ratio with adversarial predictions) of interval scheduling algorithms. Finally, we provide experimental results on real-world scheduling workloads that confirm our theoretical analysis.


翻译:在在线间距列表中,输入是一个在线间隔序列,目标是接受最大数量的非重叠间隔。 在更普遍的脱节路径分配问题中,输入是一系列请求,每个请求都涉及一对已知图表的脊椎,目标是接受最大数量的请求,形成被接受的对配之间的分错路径。这些问题是在极端情况下研究的,没有输入信息,也没有提供无误建议。我们研究的是中间设置,其中可能存在错误的预测,规定了构成输入序列的间隔/请求。对于这两个问题,我们提供在线算法竞争比率的严格上限和下限,以作为预测错误的函数。对于脱节路径分配,我们的结果排除了获得比完全相信预测的简单算法更具有竞争力的比率的可能性,而对于时间间隔列表,我们开发了一种更高级的算法。我们还在一致性(与无误预测的竞争性比率)和稳健(与对称的预测的竞争性比率)之间,在时间间隔列表分析中,我们提供了真实的实验性结果。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员