A $\lambda$-backbone coloring of a graph $G$ with its subgraph (also called a backbone) $H$ is a function $c \colon V(G) \rightarrow \{1,\dots, k\}$ ensuring that $c$ is a proper coloring of $G$ and for each $\{u,v\} \in E(H)$ it holds that $|c(u) - c(v)| \ge \lambda$. In this paper we propose a way to color cliques with tree and forest backbones in linear time that the largest color does not exceed $\max\{n, 2 \lambda\} + \Delta(H)^2 \lceil\log{n} \rceil$. This result improves on the previously existing approximation algorithms as it is $(\Delta(H)^2 \lceil\log{n} \rceil)$-absolutely approximate, i.e. with an additive error over the optimum. We also present an infinite family of trees $T$ with $\Delta(T) = 3$ for which the coloring of cliques with backbones $T$ require to use at least $\max\{n, 2 \lambda\} + \Omega(\log{n})$ colors for $\lambda$ close to $\frac{n}{2}$.
翻译:$\ lambda$- backbone 以其子谱( 也称为主干) $G 的图形 { g$ { gn { g { g } 以其子谱( 也称为主干) $H 是一个函数 $c\ c\ c( G)\ c)\ c( )\ c( )\ c( )\ c)\ c( )\ libda) $ 。 在本文中, 我们提出一种在线性时间以树和森林脊柱为坚果色颜色的颜色, 最大颜色不超过$( max), 2\ bda +\ Delta( H) $, 2\ lceil\ log{ n} $( rc) $( $( ) 。 这个结果改进了以前的近似算算法, 因为$( H) 2\\ c\\\\ li= $( $( 美元) 美元) 。</s>