Given a graph G and an integer k, the objective of the $\Pi$-Contraction problem is to check whether there exists at most k edges in G such that contracting them in G results in a graph satisfying the property $\Pi$. We investigate the problem where $\Pi$ is `H-free' (without any induced copies of H). It is trivial that H-free Contraction is polynomial-time solvable if H is a complete graph of at most two vertices. We prove that, in all other cases, the problem is NP-complete. We then investigate the fixed-parameter tractability of these problems. We prove that whenever H is a tree, except for seven trees, H-free Contraction is W[2]-hard. This result along with the known results leaves behind three unknown cases among trees. On a positive note, we obtain that the problem is fixed-parameter tractable, when H is a paw.
翻译:根据图表G 和 整数 k, $\ Pi$- Contractition 问题的目标是检查在G 中是否存在最多 k 边缘, 以便以 G 签订这些边缘, 从而得出一个能满足属性$\ Pi$的图表。 我们调查了$\ Pi$“ 无H” 的问题( 没有任何H 的诱导副本)。 如果H 是最多两个顶点的完整图表, 则无H 合同是多元- 时间可溶解的, 是很微不足道的。 我们证明, 在所有其他情况下, 问题都是NP- 完成的。 我们然后调查这些问题的固定参数可移动性。 我们证明, 只要H 是棵树, 除了七棵树以外, H- 无 H 合同是W[ 2]- h 硬的。 这个结果加上已知的结果使树中三个未知的病例留在树中。 我们肯定地看到, 当H 是爪子时, 问题是可以固定的参数可拖动的。</s>