As set systems, hypergraphs are omnipresent and have various representations. In a geometric representation of a hypergraph $H=(V,E)$, each vertex $v\in V$ is a associated with a point $p_v\in \mathbb{R}^d$ and each hyperedge $e\in E$ is associated with a connected set $s_e\subset \mathbb{R}^d$ such that $\{p_v\mid v\in V\}\cap s_e=\{p_v\mid v\in e\}$ for all $e\in E$. We say that a given hypergraph $H$ is representable by some (infinite) family $\mathcal{F}$ of sets in $\mathbb{R}^d$, if there exist $P\subset \mathbb{R}^d$ and $S \subseteq \mathcal{F}$ such that $(P,S)$ is a geometric representation of $H$. For a family $\mathcal{F}$, we define RECOGNITION($\mathcal{F}$) as the problem to determine if a given hypergraph is representable by $\mathcal{F}$. It is known that the RECOGNITION problem is ER-hard for halfspaces in $\mathbb{R}^d$. We study the families of balls and ellipsoids in $\mathbb{R}^d$, as well as other convex sets, and show that their RECOGNITION problems are also ER-complete. This means that these recognition problems are equivalent to deciding whether a multivariate system of polynomial equations with integer coefficients has a real solution.


翻译:作为设置的系统,超强是存在的,并且具有不同的表示面。在高光度$H=(V,E)$(V,E)的几何代表值中,每个顶端$v@in V$与一个点$p_v@in\mathb{R<unk> d$相联系,而每高端美元以E$与一个连接的立点$s_e\subset\\mathbb{R<unk> d$相联系,如果存在 $P_v\subset\mabb{R<unk> d$和$S\subreal=lexal cal{F},那么$(P,S)是美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元。对于一个(infite)家族来说, 美元=美元=F=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元,如果一个家庭确定一个直流化的确认的确认, 是一个问题代表,</s>

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月18日
Arxiv
0+阅读 · 2023年4月14日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员