Heged\H{u}s's lemma is the following combinatorial statement regarding polynomials over finite fields. Over a field $\mathbb{F}$ of characteristic $p > 0$ and for $q$ a power of $p$, the lemma says that any multilinear polynomial $P\in \mathbb{F}[x_1,\ldots,x_n]$ of degree less than $q$ that vanishes at all points in $\{0,1\}^n$ of some fixed Hamming weight $k\in [q,n-q]$ must also vanish at all points in $\{0,1\}^n$ of weight $k + q$. This lemma was used by Heged\H{u}s (2009) to give a solution to \emph{Galvin's problem}, an extremal problem about set systems; by Alon, Kumar and Volk (2018) to improve the best-known multilinear circuit lower bounds; and by Hrube\v{s}, Ramamoorthy, Rao and Yehudayoff (2019) to prove optimal lower bounds against depth-$2$ threshold circuits for computing some symmetric functions. In this paper, we formulate a robust version of Heged\H{u}s's lemma. Informally, this version says that if a polynomial of degree $o(q)$ vanishes at most points of weight $k$, then it vanishes at many points of weight $k+q$. We prove this lemma and give three different applications.
翻译:Heged\ H{u} 的 lemma 表示, 任何多线多线性多线性美元 $1,\ldots, x_n] $1美元以下的组合式声明, 在一定字段中, 有关多线性多线性多线性美元($0, 1<unk> n) 的组合式声明, 在一定字段中消失。 在一个字段中, 特质$p > 0, $0, n- q} F} 美元, 特质$0, 特质$0, 特质$0, 特质$0, 特质$0, 特质$0, 特质$0, 特价美元, 特价$ 美元, 特价美元 美元, 特价 。 在每点中, 多线性多线性平线性平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 。 (20) 平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面, 。</s>