In biological learning, data are used to improve performance not only on the current task, but also on previously encountered and as yet unencountered tasks. In contrast, classical machine learning starts from a blank slate, or tabula rasa, using data only for the single task at hand. While typical transfer learning algorithms can improve performance on future tasks, their performance on prior tasks degrades upon learning new tasks (called catastrophic forgetting). Many recent approaches for continual or lifelong learning have attempted to maintain performance given new tasks. But striving to avoid forgetting sets the goal unnecessarily low: the goal of lifelong learning, whether biological or artificial, should be to improve performance on all tasks (including past and future) with any new data. We propose omnidirectional transfer learning algorithms, which includes two special cases of interest: decision forests and deep networks. Our key insight is the development of the omni-voter layer, which ensembles representations learned independently on all tasks to jointly decide how to proceed on any given new data point, thereby improving performance on both past and future tasks. Our algorithms demonstrate omnidirectional transfer in a variety of simulated and real data scenarios, including tabular data, image data, spoken data, and adversarial tasks. Moreover, they do so with quasilinear space and time complexity.


翻译:在生物学习中,数据不仅用于改进当前任务的业绩,而且用于改进以往遇到的和尚未完成的任务的业绩。相比之下,古典机器学习从空白板开始,或者从塔普拉拉拉萨开始,只使用手头单项任务的数据。典型的转移学习算法可以改进未来任务的业绩,而其先前任务的绩效随着学习新任务(称为灾难性的遗忘)而退化。许多最新的连续或终身学习方法都试图保持给新任务带来的绩效。但努力避免忘记设定目标不必要地低:终身学习的目标,无论是生物还是人工学习,都应该用任何新数据来改进所有任务(包括过去和未来)的绩效。我们建议采用全向性转移学习算法,其中包括两个特别感兴趣的案例:决定森林和深层次网络。我们的主要洞察力是开发万亿伏地层,该层是独立地学习所有任务,以共同决定如何在任何给定的新数据点上开展工作,从而改进过去和今后任务的绩效。我们的算法表明,在各种模拟和真实数据假设性、模拟和真实的数据假设中,包括模拟和真实数据假设。

0
下载
关闭预览

相关内容

专知会员服务
115+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
15+阅读 · 2018年4月3日
VIP会员
相关资讯
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
22篇论文!增量学习/终生学习论文资源列表
专知
32+阅读 · 2018年12月27日
相关论文
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
15+阅读 · 2018年4月3日
Top
微信扫码咨询专知VIP会员